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Estimations for asymptotic series using a modified Romberg 
algorithm: I. Finite-size scaling calculations 

Ferenc Beleznay 
Research Institute for Technical Physics of HAS, H-1325 Budapest, POB 76, Hungary 

Received 29 May 1985 

Abstract. A new numerical method for estimating asymptotic properties is proposed. A 
generalisation of the Romberg algorithm leads to a systematic elimination of higher-order 
analytical terms in finite-size calculations and determines both the asymptotic value and 
the leading convergence exponent in a self-consistent way. 

1. Introduction 

One of the most successful methods for calculating critical properties of statistical 
mechanical models is based on the fact that (at least the most important) physical 
quantities near the critical point scale with the size of the finite system in a definite 
way-hence the extrapolation to the infinite system is determined by this finite-size 
scaling (Fisher and Barber 1972). Connecting this feature with the renormalisation 
group method (Nightingale 1977) and almost unlimited access to extremely fast 
computers improved the estimations of the statistical physical critical properties based 
on finite-size calculations. These new developments have led to a renewed interest in 
numerical finite-size scaling calculations for a wide range of systems from magnets to 
gauge field theory and to an extremely powerful method, at least for two- and (1 + 1)- 
dimensional systems. 

However, the most important parameter of this numerical scaling, the critical index, 
is not known in most cases, and even the scaling can only be described by more than 
one parameter (confluent singularities). Hence the success of the finite-size calculations 
greatly depends on the method by which the extrapolation is performed. 

This extrapolation is equivalent to the mathematical problem of evaluating 
asymptotic properties by numerical methods. It is interesting that till now this extrapo- 
lation was mostly done by simple qualitative numerical-graphical procedures or with 
an approximate fitting of the presupposed asymptotic form by non-linear parameter 
estimation (Hamer 1983). 

It was Hamer and Barber (1981) who tried to compare and further develop the 
usual series transformation methods (Pad6 approximation, Aitken-Shanks tables, . . .) 
to evaluate their results for Z3 and Z5 symmetric spin models. To get reasonable results 
they introduced an arbitrary parameter to unite the advantages of the Pad6 analysis 
and the power series extrapolation methods. Another correction (the so-called M shift) 
was needed to avoid the (non-physical) variation of the estimated parameters. The 
disadvantage of their method is that these two parameters cannot be evaluated from 
basic principles; they are empirical. In addition, the apparent (numerical) convergence 
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of their method is misleading, since the numerical variation is much smaller than the 
change introduced by the M shift. This shows that the error of these calculations can 
hardly be estimated from the mathematical procedure itself. 

These shortcomings are common for the more simple and subjective graphical and 
numerical fitting procedures as well. 

In this paper a new asymptotic method will be developed which is based on the 
Romberg algorithm, mostlyused for numerical integration. It is shown that the accuracy 
of this method is comparable to or better than the other known methods; the estimates 
do not depend on arbitrary parameters and the estimated error can also be given in 
most cases. 

In 0 2 the method will be introduced. The applications will be discussed in 
00 3.1-3.4. In the short summary (§ 4) a quick rCsumC concerning the convergence 
and other properties of the method is presented. 

2. Numerical evaluation of limits, the Romberg algorithm 

It is a well known problem in numerical analysis (Henrici 1977) to evaluate the limit 
a, of a given q( h )  function in the h + 0 limit when the q(  h )  function can be evaluated 
for given values of h, or only given for a set of values ( h i  ) of which 0 is an accumulation 
point. The other important case when the limit N+oo should be determined can be 
reduced to the previous case by the substitution hi = 1/ Np 

If the function q ( h )  has an asymptotic (not necessarily convergent) power series 
expansion in the h + 0 limit, 

q ( h ) = a o + a , h 1 + a 2 h 2 + . .  , (h+O,h>O),  ( 1 )  

then without knowing the coefficients a ,  an algorithm can be derived which calculates 
the limiting value a,. 

Let the values qi,, be defined by qi,, = q( h i ) ,  for ho > h ,  > h2 > . . . ; then the series 
q i , k  are calculated by the following expression: 

(2) 
k 

q i , k = ( q i , k - l - P i  q i - l , k - 1 ) / ( 1  - p : ) ,  

where p:  = ( h + k / h , ) .  

The ordered set 

is called a Romberg array (RA), and the arrows show the flow of the calculation of 
the elements of this array as given by equation (2) .  

It is known that if all the coefficients ai are different from zero in expansion (l),  
then every column of the RA converges faster to a, than the previous ones. 

With very weak restrictions on the asymptotic series (1) it can be proved that the 
convergence of the diagonal series to a, is faster than linear. In addition, the error E 



Estimations for asymptotic series: I 5 5 3  

of the numerical estimate of a, (which is equal to a,,, for a series of n terms) for large 
enough k is given (Stoer and Bulirsch 1980) by 

E < 2Iqn,,-l - 4 n - l , n - l l .  (4) 
Although the method just reviewed has appealing features it cannot be applied 

directly for real physical systems since the supposed asymptotic expansion (1) does 
not exist. 

Instead of that, for example the asymptotic form of a singular function at the 
critical point is determined by the critical indices. With the leading critical index, 
however, at the critical point, the following expansion always exists: 

where a is the (leading) convergence exponent, h is the reduced temperature (con- 
centration . . .) and q( H) is the investigated singular physical quantity. The form ( 5 )  
is different from the usual expressions given by finite-size scaling renormalisation 
techniques. There, for any estimated quantity, instead of form ( 5 )  an expansion exists 
in which the different terms contain the reduced quantity having exponents combined 
from the leading and the correction (confluent) exponents (Privman and Fisher 1983). 
It is not difficult to show that any term of this ‘physical’ expansion can be expanded 
in a power series of the variable H for H > 0. In what follows, the explicit expansion 
is not needed; the very existence of this expansion is sufficient to apply the Romberg 
method as discussed earlier. Naturally, the convergence of this expansion does depend 
on the actual values of the correction exponents and, in addition, of the coefficients 
of the correction terms. 

Formally the expression ( 5 )  with the hp = HI substitution can be transformed to 
the form (1). However, without the value of a this transformation is a useless formal 
transcription. 

What we propose in this paper is a consistent, modified Romberg-type procedure 
by which both a, and a can be, in principle, determined. If the RA is constructed in 
some way such that its convergence is ‘optimal’, then according to the different possible 
choices, the following cases can be proposed. 
Case A. If neither the limit a, nor the critical (expansion) exponent a is known, one 
should try to minimise the estimated error (equation (4)) with the optimal choice of 
a. (Given the initial data ql,, the further entries of the RA ( 3 )  depend only on the 
parameter a in a non-linear way.) 
Case B. a, is known in advance and the ‘critical index’ a is to be determined. In this 
case the condition is that the last entry of the RA, (q,,,), should agree with the value 
of a, within the estimated error. An important and frequent case is when the limit a, 
(or the inverse of the limit) is zero. In this case we require that the limit U,,, and the 
error are simultaneously minimised and have comparable values (case Bl). In case B 
(B,) the value of a is fitted by a non-linear parameter estimation. 
Case C. If the value a is known in advance either from basic principles or from a 
conjecture (which might have already been checked by calculations based on case A 
and/or case B) then the hp = HI substitutions reduce this case to the standard Romberg 
procedure. 

It is seen that in case C in addition to the required asymptotic value an error 
estimate is also given (equation (4)). In case A this value has been used to optimise 
the modified Romberg procedure, hence there is no estimate of the error. The conver- 
gence of the procedure can be checked only qualitatively. In case B an error is also 
given; however, this is biased by the forced convergence to the assumed or known limit. 

q ( H ) = a , + a , H ’ + u , H 2 +  . . . ,  H = h“, ( 5 )  
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The programming of all three cases is almost trivial and the subroutines of this 
modified Romberg algorithm consist of less than 100 lines of plain FORTRAN statements. 
The time requirements even in cases A and B (when iteration is needed for the 
determination of the value of a) is less than some tenths of a second for calculations 
with n up to 10 on a medium size IBM computer (IBM 3031). 

As in every numerical procedure, the numerical stability of the Romberg algorithm 
is an important issue. Without going into details it can be seen directly that the kth 
column of the RA contains terms which are higher orders in h than ( h k ) .  It means 
that the next column is determined by the (usually very small) differences of the 
right-hand sides of equation (2). The error of this difference is enhanced by the 
denominator (1 - p F ) ,  which goes to zero if h i / h i + l  goes to one. This is usually the 
case in finite-size calculations, where the calculation time increases rapidly with N, 
hence the values of hi( = l/Ni) cannot be chosen arbitrarily. 

So the applications of the method require some experience in choosing the accuracy 
of the original (usually numerical) calculations and the values Ni optimally. We come 
back to this point in 8 3. In the following the order of the calculation is defined as 
the number of initial different data. 

3. Applications of the modified Romberg algorithm 

3.1. Coulomb-type lattice sums 

In quantum mechanical calculations of infinite systems the numerical evaluation of 
the Coulomb or exchdnge energy of the many-particle system is often needed. Although 
in this paper we are dealing mostly with statistical physical problems, a simple 
one-dimensional Ewald summation could well demonstrate the numerical procedure 
and it may be more interesting for physicists than the standard mathematical examples. 

The infinite sum to be evaluated in suitable units is the following: 

This is the Coulomb energy of a chain with alternating charges, and it is a special case 
of the function 77 (n), which is defined by 

Table 1 contains the results of the calculation of ~ ( 1 )  using our method. In the first 
column the number of pairs in the partial sum of the infinite sum of equation (6) is 
given, and the corresponding partial sums (or approximate values) are listed in column 
2. Since the limit is finite and it is not known, the calculation according to case A is 
performed. Column 3 contains the calculated limits using partial sums up to the value 
indicated in column 1. Column 4 lists the resulting 'optimal values' of a, too. 

Naturally in this case the value of a is known in advance (a = -l), and the 
calculations following case C can also be performed. These results are found in column 
5 .  

It is seen that the calculated limits are extremely accurate. Although the starting 
approximate values are only about 1% accurate, the relative error of the extrapolated 
limit with n = 10 is less than in case A where no a priori knowledge has been used. 
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Table 1. Calculation of the one-dimensional Ewald sum ( ~ ( 1 ) )  with full accuracy (upper 
part) and with rounded initial data for six digits (lower part). The first inaccurate digits 
of the results are underlined. 

Case A Case C 

M Input data 4m.n  a ¶?I," (E l  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4/ 
5 
6 
7 
8 
9 

10 

0.500 000 0000 
0.583 333 3333 
0.616 666 666 666 
0.634 523 809 523 
0.645 634 920 635 
0.653 210678210 
0.658 705 183 705 
0.662 871 850 371 
0.666 139 824 228 
0.668 771 403 175 

0.693 147 180 559 

0.500 000 
0.583 333 
0.616 666 
0.634 523 
0.645 634 
0.653 210 
0.658 705 
0.662 871 
0.666 139 
0.668 771 

- 
0.721 512 540 353 
0.694 829 949 043 
0.693 056 960 621 
0.693 101 148 953 
0.693 144 578 872 
0.693 147 828 722 
0.693 147 292 025 
0.693 147 179 826 

(exact value) 

- 
0.721 508 96 
0.694 829 75 
0.693 053 45 
0.693 164 72 
0.693 151 21 
0.691 750 39 
0.696 042 82 
0.689 750 10 

- 
- 
-0.680 848 
-0.960 270 
- 1.004 93 1 
- 1.003 029 
-1.000213 
-0.999 919 
-0.999 983 
- 1.000 000 

- 
- 
-0.680 858 
-0.960 251 
- 1.004 995 
- 1.000 196 
- 1.001 069 
-1.115 117 
- 1.343 242 
-1.420 047 

- 
- 
0.691 666 666 666 
0.693 253 968 254 
0.693 171 296 296 
0.693 147 847 523 
0.693 146 930 230 
0.693 147 150 468 
0.693 147 181 316 
0.693 147 181 023 

- 
- 
0.69! 665 00 
0.693 263 00 
0.693 169 25 
0.693 167 75 
0.693 163 07 
0.692 625 75 
0.695 390 95 
0.688 552 27 

- 
- 
0.16E- 1 
0.1 1E- 2 
0.66E - 4 
0.19E-4 
0.78E - 6 
0.19E - 6 
0.27E - 7 
0.26E-9 

- 
- 
0.16E - 1 
O.llE-2 
0.67E - 4 
0.12E-5 
0.40E - 5 
0.47E - 3 
0.24E - 2 
0.61E-2 

Calculations based on case C are somewhat more accurate, and in this case the 
error can also be estimated. These estimates are listed in column 6-in perfect 
agreement with the calculated values. All these calculations have been done with 
double precision (-16 digits). It is worth mentioning that in case A an estimate of 
the 'critical index' has also been obtained. It is seen tha its value for n = 10 is accurate 
for 

Since this sum can be calculated easily, the most important features of the proposed 
algorithm will be demonstrated using data obtained here. As has been discussed in 
§ 2 ,  the accuracy of the estimated limit does depend on the accuracy of the raw input 
data. If the data in our example are rounded for six digits then the results change as 
shown in the second part of table 1. It is seen that the estimated limit is best at the 
intermediate order of 6. What is remarkable is that the estimated error (column 6) 
clearly indicates this optimum; moreover, it is in agreement with the calculated value. 
(The estimate of the convergence exponent (column 4) is also optimum in a calculation 
of type A at the same order, which shows the consistency of the proposed methods.) 
In agreement with the expectation, the smaller the accuracy, the more the minimal 
error is shifted towards lower orders. 

Hence it is demonstrated that the accuracy of the original calculation (input data) 
determines the optimal order and the ultimate accuracy of the modified Romberg 
algorithm. The unique error estimating properties, however, of our method clearly 
indicate the loss of accuracy, hence the choice of the order is not arbitrary; it is 



556 F Beleznay 

controlled by this measure of the accuracy of this numerical procedure. Our example 
indicates even more that the original values could hardly be used for accurate and 
reliable graphical extrapolation since the data deviate significantly from the straight 
line corresponding to the asymptotics 1/ N. 

3.2. Investigation of' model 2, 

The finite-size calculation and analysis of the energy gap in the two-dimensional Z3 
model have been performed by Roomany et a1 (1980). Their data have been used by 
Hamer and Barber in their series extrapolation method mentioned earlier. Table 2 
reproduces those data which will be used in this section. Column 2 contains the 
numerical values of the Callan-Symanzik p function for the lattice of size M. Sinilarly 
columns 3 and 4 list the approximate values of the specific heat and the susceptibility. 

Table 2. Numerical data of the Callan-Symanzik p function, specific heat and susceptibility 
for model Z, of finite-size calculations (Roomany et al 1980). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.000 000 000 
0.361 661 031 
0.217 322 900 
0.153 075 335 
0.116 976 574 
0.093 994 260 
0.078 156 144 
0.066 623 193 
0.057 876 606 
0.05 1 032 229 

0.000 000 
0.433 0124 
0.652 6328 
0.819 0950 
0.957 9403 
1.079 041 5 
1.187 4918 
1.286 3330 
1.377 5694 
1.462 5929 

0.666 658 
2.821 367 
5.943 208 
9.936 795 

14.739 091 
20.304 015 
26.595 732 
33.582 213 
41.217 03 
- 

It is known that the finite-size (mass-) gap scales at the critical point as 1/ M. Other 
physical quantities scale with the mass-gap in a well defined way more accurately, if 
"(A) is a quantity which diverges in the infinite system as follows: 

'P ( A ) = A( A - A=)*, (7) 
then the approximate ' P M ( A c )  scales with the lattice size M as M*"'. The +!I/ v numbers 
will be determined for the quantities listed in table 2. 

3.2.1. The p function. The proposed method can be applizd directly to the data in 
column 2 of table 2. Using the same notation as in Q 3.1, in table 3 the results for 
cases A, B and C are listed. In case B it is used that the limit a, is zero; in case C, 
on the other hand, for the critical exponent l /v,  the conjectured value -1.2 (den Nijs 
1979) is used which is we!l supported by our calculations (columns 3 and 5 ) .  

The error of these calculated critical indices can also be estimated if the known 
limit a, is m'odified with the estimated errors of the calculations. Using this estimation, 
the suggested value of the critical index from our calculation is 

I /  v - 1.198 * 0.003. 

3.2.2. Susceptibility and speciJic hear. In the same way as for the p function the data 
for the (inverse) susceptibility have been analysed. The results are listed in table 4. 
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Table 3. Evaluation of the p function by methods A, B and C. For notation see text. 

~ ~~ 

Case A Case B Case C 
- 

1 
2 
3 
4 
5 
6 
7 
e 
9 

10 

1.000 000 00 
0.361 661 031 
0.217 322 900 
0.153 075 335 
0.116976574 
0.093 994 260 
0.078 156 144 
0.066 623 193 
0.057 876 606 
0.051 032 229 

- 1.664 88 
-1.335 28 
- 1.227 39 
-1.173 06 
-1.191 85 
-1.193 66 
-1.195 53 
-1.195 51 

0.67E - 1 
0 . l l E - 1  
0.18E -- 2 
0.67E - 3 
0.97E-4 
0.57E-4 
0.27E - 4 
0.27E - 4 

-1.101 65 
- 1,207 05 
-1.187 93 
- 1,194 96 
-1.19629 
-1.197 23 
-1.197 75 
-1.198 35 

0.15E 0 
0.24E - 1 
0.15E - 2 
0.28E - 3 
0.37E -4 
0.18E-4 
0.78E - 5 
0.69E - 5 

- 1.200 
- 1.200 
- 1.200 
- 1.200 
- 1.200 
- 1.200 
- 1.200 
-1.200 

0.298E - 1 
0.648E - 3 
0.557E - 3 
0.158E-3 
0.816E -4 
0.451E - 4 
0.280E - 4 
0.162E-4 

0.117E 0 
0.247E - 1 
0.103E - 2 
0.352E - 3 
0.693E -4  
0.335E-4 
0.157E -4  
0.1 10E -4  

In case C the conjectured value -1.733 (which is supported by our calculations as 
well) has been used. Here in all calculations the values obtained from the data 
corresponding to M = 9 significantly deviate from the other (better converged) values. 
The estimated error also signals some disturbing change. The good quality of the 
convergence for M values up to 8 and the experience gained from different numerical 
studies permit us to believe that the last entry in column 3 is either erroneously listed 
or the original calculation has significantly higher relative error for M = 9. 

Hence using only values up to 8 we obtain 

y /  v = - 1.734 * 0.002. 

The data for the specific heat could not have been analysed succesfully using this 
direct approach. With some standard series transformation, however, the critical index 
could be evaluated. These calculations will be published elsewhere. One possible 
reason for this is that the estimated value of the exponent is &/v=-O.4 ,  and the 
convergence in this case is much slower. 

Before closing this section it should be mentioned that Hamer and Barber in their 
calculations gave somewhat smaller errors for their estimates. We repeated their 

Table 4. Evaluation of the critical exponent y /  U from the finite-size inverse susceptibility 
data (column 2) by methods A, B and C. For notation see table 3. 

Case A Case B Case C 

M X>W Y l V  I%"l rlu IEI Y I V  l L " l  IEI  

0.666 656 
2.821 367 
5.943 208 -2.21676 0.40E-1 -1.58439 0.18E 0 -1.733 0.729E-2 0.124E 0 
9.936 795 -1.595 16 0.57E-2 -1.737 24 0.68E-2 -1.733 0.175E-3 0.679E-2 

14.739 091 -1.74059 0.13E-3 -1 73429 0 . l lE-3  -1.733 0.284E-4 0.138E-3 
20.304 015 -1.73328 0.22E-4 -1.73494 0.13E-4 -1.733 0.259E-4 0.232E-5 
26.595 732 -1.73479 0.20E-5 -1.73502 0.10E-5 -1.733 0.176E-4 0.802E-5 
33.585 213 -1.73484 0.15E-5 -1.735 10 0.67E-6 -1.733 0.126E-4 0.483E-5 
41.247 030 -1.76649 0.19E-3 -1.721 38 0.80E-4 -1.733 0.484E-4 0.598B-4 
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calculations and found that in all cases the change of their estimates due to different 
M shifts is larger than their suggested limits, even outside the region where this shift 
causes some unexplained instability. Moreover, the optimum parameters of these 
M shifts are different for l / v  and for y / v  and their values are chosen arbitrarily. 
Hence we feel that their errors are underestimated and do not follow from the given data. 

3.3. One-dimensional quantum lsing model 

There are many quasi-one-dimensional magnetic insulators which can be described by 
the quantum Ising model with spin values of f, 1, or higher. 

The case f can be solved exactly by the Bethe ansatz; the other cases should be 
investigated numerically. Recently Solyom and Ziman (1984) investigated these models 
with specific finite-size calculations. To check their numerical procedure they calculated 
the case, too. Using their data we analysed the energy of the ground state and the 
value of the gap with our modified Romberg algorithm. Tables 5 and 6 contain the 
results of this analysis. It is seen that the ground state energy is obtained for five digit 
accuracy (the exact value is In 2-0.25 = 0.443 147, , .), in spite of the fact that the 
initial data were given only for six digits! If we use all the calculated data, then the 
estimated error (column 6) indicates that the inital accuracy does not allow such 
high-order calculation, in the same way as was noticed in 0 3.1. From the estimated 
error it is seen that the order of about six is optimal. Hence six input data have been 
chosen such that they span the same interval (2-18) and the ratio of the consecutive 
M values should be as big as possible. Calculation with one possible choice is presented 

Table 5. Asymptotic estimates of the ground state energy for the spin-; quantum king 
model. Finite-size data are from Solyom and Ziman (1984). 

2 
4 
6 
8 

10 
12 
14 
16 
18 

-0.750 000 
-0.500 000 
-0.467 129 -0.449 158 -2.5649 -0.443 853 0.24E - 1 
-0.456387 -0.442 117 -1.8075 -0.443 110 0.69E - 3 
-0.451 545 -0.443 166 -2.0110 -0.443 138 0.26E - 4 
-0.448 949 -0.443 138 -2.0002 -0.443 138 0.22E -6 
-0.447 396 -0.443 167 -2.0190 -0.443 149 0.10E-4 
-0.446 394 -0.443 203 -2.0574 -0.443 168 0.19E-4 
-0.445 708 -0.443 088 -2.0426 -0.443 062 0.10E-3 

Table 6. Same as table 5 with optimal sampling. 

Case A Case C 

M EM Eo a Eo / E /  

2 -0.750000 
4 -0.500000 
8 -0.456 387 -0.447 171 -2.5191 -0.443 528 0.25E- 1 

12 -0.448 949 -0.442 782 -1.8807 -0.443 131 0.38E-3 
14 -0.447 396 -0.443 153 -2.0073 -0.443 143 0 . l lE-4  
18 -0.445 708 -0.443 151 -2.0061 -0.443 147 0.40E - 5 
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in table 6 .  The results show a steadily improved approximation for the limit as is 
expected. Other possible choices show the same feature. 

From here, the estimated limit is accurate to six digits, which is the true accuracy 
of the initial data, and the estimated critical index is accurate to three digits. Naturally, 
one can hardly expect more accurate values and it is significantly better than the values 
obtained by standard graphical extrapolation. 

3.4. Mass gap in lattice spectrum calculations 

For the time being the numerical investigations of field theoretical models are the most 
powerful methods to explore the structure of quantum field theory. 

Different numerical approaches have been applied to the quantum spin chains with 
O(2) symmetry. A new numerical procedure to handle the problem of truncating the 
(infinite-)dimensional Hilbert space has been investigated by Patkos and Rujan (1985). 
The finite-lattice mass-gap values from their calculations for different coupling strengths 
(x )  are given in table 7 .  

Figure 1 summarises the analysis of these data using our method. The numerical 
limiting mass-gap value has a minimum around x = 2. Since the numerical convergence 
exponent converges to -1, which is the theoretical value at the critical point, the 
calculations have been performed according to case C too. In this figure only calcula- 
tions based on method C are displayed. Basically similar results are obtained in the 
two other cases (A and B,). 

In  addition figure 2 shows the deviation of the calculated convergence exponent 
from the theoretical value of -1 as a function of the coupling strength. Once again 
its minimum is minimal around x = 2 .  

Table 7. Finite-size mass-gap values for coupling strengths ( x )  between 1.6-2.3 (upper 
part) of the quantum spin chain with O(2) symmetry (Patkos and Rujan 1985). Double 
interpolated mass-gap values for 1.9, 2.0, 2.1 (lower separated part) of the spline interpola- 
tion. The first inaccurate digits of the interpolated values are underlined. 

x = 1.6 1.7 1.8 1.9 2.0 2.1 

1.000 000 
0.520 616 
0.354 550 
0.269 822 
0.218 280 
0.183 541 
0.158 508 
0.139 619 

1.000 000 
0.517 402 
0.350 640 
0.265 769 
0.214 250 
0.179612 
0.154 579 
0.135 923 

1.000 000 
0.514 738 
0.347 510 
0.262 610 
0.211 180 
0.176 670 
0.151 894 
0.133 234 

1.000 000 
0.512 521 
0.433.990 
0.260 134 
0.208 820 
0.174 408 
0.149 812 
0.131 318 

1.000 000 
0.510669 
0.342 960 
0.258 182 
0.207 017 
0.172 773 
0.148 231 
0.129 842 

1.000 000 
0.509 115 
0.341 300 
0.256 636 
0.205 604 
0.171 485 
0.147 065 
0.128 747 

x = 2.2 2.3 

1.000 000 
0.507 809 
0.339 960 
0.255 405 
0.204 500 
0.170 497 
0.146 152 
0.127 932 

1.000 000 
0.506 706 
0.338 850 
0.254 421 
0.203 630 
0.169 718 
0.145 300 
0.127 308 

x = 1.9 

1.000 000 
0.512 525 
0.344 997 
0.260 141 
0.208 830 
0.174 428 
0.149 818 
0.131 318 

_- 2.0 

1.000 000 
0.510 668 
0.342 957 
0.259 18l 
0.207 013 
0.172 761 
0.148 230 
0.12985$ 

2.1 

1.000 000 
0.509 112 
0.341 300 
0.256 632 
0.205 602 
0.171 489 
0.147 961 
0.128 742 
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Figure 1. Mass-gap values against coupling x from different orders of the modified Romberg 
algorithm in the O(2)  model. A, data with M = 1 ,  2, 3,  5, 8; 0, data with M = 1 ,  2, 4, 8; 
63, data with M = 1, 2, 3, 4, 8; 0, data with M = 1 ,  2, 4, 7.  

By standard cubic spline fitting of the x dependence of finite lattice gaps the limiting 
gap value and its estimated error have been analysed around x = 2 in more detail. This 
analysis is displayed with a finer scale on the insert of figure 1 .  From this analysis our 
preferred critical value is x = 2.02 rt 0.02. 

Once again the original data are given for six digits, which is the estimated accuracy 
of the original calculation. With this accuracy the extrapolation can be performed 
only with some limited order. In figure 1 the different notations correspond to the 
different choice of the initial data set. However, the calculated limits (and errors) 
basically do not depend on the actual choice as is seen in the figure. 

It is amusing that the gaps obtained at the estimated critical point are consistently 
of order lop6 which is the accuracy of the initial data. 

This quasi-zero of the mass gap cannot be obtained, however, for data calculated 
at the chosen couplings (1.6, 1 .7 , .  . . , 2.3) but at some intermediate values generated 
by the cubic spline interpolation. To check that the singular-looking smooth curves 
in figure 1 are not an artefact of the interpolation procedure itself, the following test 
has been performed. First the finite lattice mass-gap data have been interpolated at 
points 1.65, 1 .75 , .  . . ,2.25, using the original data (as given in table 7); then using 
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Figure 2. Difference of the calculated convergence exponent ( a )  and the theoretical value 
(-1) as a function of the coupling constant in the O(2) model. For notation see figure 1. 

these interpolated values a second interpolation is based on these new values and 
using them again, a cubic spline interpolation has been performed for points 1.9, 2.0, 
2.1. These re-interpolated values are listed in the second part of table 7. It is seen 
that the original data were re-obtained for six digits which proves the consistency and 
accuracy of the cubic spline interpolation used to generate the finite lattice mass-gap 
values at the intermediate coupling strengths. 

4. Summary 

A new method is presented to evaluate limiting values of finite-size scaling calculations. 
This new method is an appropriate modification of the Romberg algorithm, which 
calculates the ‘critical index’ consistently (this quantity should be predetermined for 
the standard Romberg procedures). 

For a simple physical problem, for the one-dimensional lattice (Ewald) sum the 
extraordinary accuracy of the method is demonstrated. This accuracy cannot be reached 
in standard finite-size calculations, where the input data for this algorithm are usually 
given with much less accuracy. 

However, for a selection of published finite-size data the evaluation of the limits 
shows accuracy which in a certain sense surpasses the usual expectations. 

The ultimate accuracy in some cases seems to reach the accuracy of the raw initial 
data themselves. This naturally can only be reached if the expansion equation ( 5 )  is 
highly convergent. In the case when a singular expression has confluent singularities 
as well, a much slower convergence is expected. The results for the quantum Ising 
problem (at least for s = 4) and for the O(2) model indicate that in these cases the 
confluent term probably vanishes. 

It is important to emphasise that the unique error predicting features of the presented 
method are very useful to get an objective measure of the quality for the limiting value. 
As far as we know this is the first method which has this important feature. 
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In this first paper the method itself is presented and we excluded many possible 
modifications of it. As it stands the application for the model Z3 allows the evaluation 
of the critical indices indirectly, hence their error can only be estimated by biased 
estimation discussed in P 3.2. Naturally if one expresses finite-size approximants for 
a given exponent from the ratio of the consecutive elements of table 2 as usual (Hamer 
and Barber 1981), then our Romberg-type calculation (now with a = -1) will give 
critical indices directly and their error estimates as discussed earlier. 

One further comment is that any transformation which eliminates some confluent 
(or antiferromagnetic) term can be applied along with this proposed method. It is, 
therefore, expected that as a first step the application of the alternating VBS transforma- 
tion due to Vanden Broeck and Schwartz (1979) which is capable of reducing the ‘next’ 
leading correction term would be beneficial in cases where this term is significant. 
Evaluation of this possibility and a detailed comparison with existing studies for 
different extrapolation methods (Barber and Hamer 1982, Smith and Ford 1979) will 
be published elsewhere. 

The question of the confluent singularities will be discussed also in the second part 
of this series of papers with applications to series extrapolations different from the 
finite-size calculations discussed here. 
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